- adjoint matrices
- сопряжённые матрицы
English-Russian scientific dictionary. 2008.
English-Russian scientific dictionary. 2008.
Adjoint representation — In mathematics, the adjoint representation (or adjoint action) of a Lie group G is the natural representation of G on its own Lie algebra. This representation is the linearized version of the action of G on itself by conjugation.Formal… … Wikipedia
Matrices progressives — Quotient intellectuel « QI » redirige ici. Pour les autres significations, voir QI (homonymie) … Wikipédia en Français
Auto-adjoint — Endomorphisme autoadjoint En mathématiques et plus précisément en algèbre linéaire, un endomorphisme autoadjoint est un cas particulier d application linéaire. Cette propriété s applique à une application linéaire d un espace vectoriel dans lui… … Wikipédia en Français
Endomorphisme auto-adjoint — Endomorphisme autoadjoint En mathématiques et plus précisément en algèbre linéaire, un endomorphisme autoadjoint est un cas particulier d application linéaire. Cette propriété s applique à une application linéaire d un espace vectoriel dans lui… … Wikipédia en Français
Self-adjoint operator — In mathematics, on a finite dimensional inner product space, a self adjoint operator is one that is its own adjoint, or, equivalently, one whose matrix is Hermitian, where a Hermitian matrix is one which is equal to its own conjugate transpose.… … Wikipedia
Hermitian adjoint — In mathematics, specifically in functional analysis, each linear operator on a Hilbert space has a corresponding adjoint operator. Adjoints of operators generalize conjugate transposes of square matrices to (possibly) infinite dimensional… … Wikipedia
Self-adjoint — In mathematics, an element x of a star algebra is self adjoint if x^*=x.A collection C of elements of a star algebra is self adjoint if it is closed under the involution operation. For example, if x^*=y then since y^*=x^{**}=x in a star algebra,… … Wikipedia
Dirac adjoint — In quantum field theory, the Dirac adjoint of a Dirac spinor is defined to be the dual spinor , where is the time like gamma matrix. Possibly to avoid confusion with the usual Hermitian adjoint , some textbooks do not give a name to the Dirac… … Wikipedia
Hilbert space — For the Hilbert space filling curve, see Hilbert curve. Hilbert spaces can be used to study the harmonics of vibrating strings. The mathematical concept of a Hilbert space, named after David Hilbert, generalizes the notion of Euclidean space. It… … Wikipedia
Jordan algebra — In mathematics, a Jordan algebra is defined in abstract algebra as a (usually nonassociative) algebra over a field with multiplication satisfying the following axioms:# xy = yx (commutative law) # (xy)(xx) = x(y(xx)) (Jordan identity)The product… … Wikipedia
Bell's theorem — is a theorem that shows that the predictions of quantum mechanics (QM) are not intuitive, and touches upon fundamental philosophical issues that relate to modern physics. It is the most famous legacy of the late physicist John S. Bell. Bell s… … Wikipedia